Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor.

نویسندگان

  • Andreas Ohlmann
  • Ernst R Tamm
چکیده

Norrin is a secreted signaling molecule with structural and functional characteristics of an autocrine and/or paracrine acting growth factor. In the eye, Norrin is constitutively expressed in Müller cells. Norrin specifically binds to Frizzled-4 receptors and activates the canonical Wnt/β-catenin signaling pathway that is profoundly enhanced when Tspan12 is present at the Norrin/Frizzled-4 receptor complex. In the absence of Norrin or Frizzled-4, intraretinal capillaries are not formed during developmental angiogenesis. As a result there is considerable evidence that Norrin and Frizzled-4 are part of an essential signaling system that controls the formation of the retinal vasculature during eye development. Intriguingly, Norrin promotes vessel regrowth and induces the formation of intraretinal capillaries following oxygen-induced retinopathy in mice, an animal model of retinopathy of prematurity. Moreover, Norrin has pronounced neuroprotective properties on retinal ganglion cells (RGC) with the distinct potential to decrease the damaging effects of excitotoxic NMDA-induced RGC injury. The neuroprotective effects of Norrin similarly involve an activation of Wnt/β-catenin signaling and the subsequent induction of neuroprotective growth factor synthesis in Müller cells, such as that of fibroblast growth factor-2 (FGF2) or ciliary neurotrophic factor (CNTF). Overall, Norrin and the molecules involved in its signaling pathway appear to be promising targets to develop strategies that induce intraretinal vessel formation in patients suffering from ischemic retinopathies, or that increase RGC survival in glaucoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization

Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signalin...

متن کامل

Functional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII

Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...

متن کامل

Tumor Associated Mesenchymal Stromal Cells Show Higher Immunosuppressive and Angiogenic Properties Compared to Adipose Derived MSCs

Background: Differentiation, migratory properties and availability of Mesenchymal Stromal Cells (MSC) have become an important part of biomedical research. However, the functional heterogeneity of cells derived from different tissues has hampered providing definitive phenotypic markers for these cells. Objective: To characterize and compare the phenotype and cytokines of adipose derived MSCs (...

متن کامل

Structure and function of Norrin in assembly and activation of a Frizzled 4-Lrp5/6 complex.

Norrin is a cysteine-rich growth factor that is required for angiogenesis in the eye, ear, brain, and female reproductive organs. It functions as an atypical Wnt ligand by specifically binding to the Frizzled 4 (Fz4) receptor. Here we report the crystal structure of Norrin, which reveals a unique dimeric structure with each monomer adopting a conserved cystine knot fold. Functional studies demo...

متن کامل

Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia.

Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic peptide with recently identified neurotrophic effects. Because some neurotrophic factors can protect neurons from hypoxic or ischemic injury, we investigated the possibility that VEGF has similar neuroprotective properties. In HN33, an immortalized hippocampal neuronal cell line, VEGF reduced cell death associated with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Progress in retinal and eye research

دوره 31 3  شماره 

صفحات  -

تاریخ انتشار 2012